martes, 5 de octubre de 2010

centrifuga


Centrifugación

La centrifugación es un método mecánico de separación de líquidos no miscibles, o de sólidos y líquidos por la aplicación de una fuerza centrífuga. Esta fuerza puede ser muy grande. Las separaciones que se llevan a cabo lentamente por gravedad pueden acelerarse en gran medida con el empleo de equipo centrífugo. Las centrífugas o bombas centrífugas se usan en diferentes tipos de industrias: industria química, petroquímica, refinerías, industrias alimenticias, farmacéuticas, textil, azucarera, etc.

Diagrama de flujo



TIPOS DE CORRIENTES Y SUS PROPIEDADES


§ Los tipos de corriente son tres que se dividen en dos grupos de entrada y salida :
Entrada
- es una mezcla de un liquido y un sólido soluble.
Salida
-se da una corriente de un liquido.
-se da una corriente de un sólido.


¿PARA QUE LA CENTRIFUGACION?


§ El objetivo de la centrifugación es separar sólidos insolubles (de partículas muy pequeñas difíciles de sedimentar) de un liquido. Para ello, se aplica un fuerte campo centrífugo, con lo cual las partículas tenderán a desplazarse a través del medio en el que se encuentren con la aceleración


CENTRIFUGAS





EJEMPLOS


En la industria lechera, se centrifuga la leche, para la obtención de crema, ya que separa las partículas más pesadas (que saína) del liquido (suero) por acción de la fuerza centrifuga.
En la industria del acero, se pueden fabricar tubos sin costura, vaciando el acero liquido (1,550ºc aproximadamente) en un molde redondo, girando a alta velocidad y dependiendo de la cantidad de acero, se obtiene el espesor del tubo

martes, 27 de julio de 2010




Tamizado

El tamizado es un método físico para separar mezclas. Consiste en hacer pasar una mezcla de partículas sólidas de diferentes tamaños por un tamiz o colador. Las partículas de menor tamaño pasan por los poros del tamiz atravesándolo y las grandes quedan retenidas por el mismo.



Se usan estos tamices en los casos de medir y tamizar arenas de fundición, detergentes en polvo, café, minerales, compuestos químicos, carbón, materiales de construcción y relleno, harinas, semillas, metales en polvo, fertilizantes artificiales, suelos.
Estos tamices están construidos en una sola pieza, estos tamices, a modo de base de cilindro cortado, se diseñan con un tejido sin ranuras para evitar la acumulación de suciedad en los puntos de cruce ( sin soldaduras, sin residuos). Estos tamices reflejan los condicionamientos de normas ISO con un proceso de fabricación de alto rendimiento, tienen alta resistencia a la corrosión, y son fáciles de limpiar pues son de acero inoxidable hiperaleado. Dada la aplicación de estos tamices antes de su salida a mercado, son ampliamente probados, medidos ópticamente y expedidos con certificado de calibración. Similares a estos tamices son los utilizados en el tamizado de aguas.



Ejemplo del tamizado
Si tu sacas tierra del suelo y la pasas por el colador va a caer todo lo fino y lo mas grueso queda arriba como las piedras, etc. Es un método muy sencillo utilizado generalmente en mezclas de sólidos heterogéneos, como piedras y arena, en la cual la arena atravesará el tamiz y las piedras quedaran retenidas. Los orificios del tamiz suelen ser de diferentes tamaños y se utilizan de acuerdo al tamaño de las partículas que contenga la mezcla.
Tamización: para aplicar este método es necesario que las fases se presenten al estado sólido. Se utilizan tamices de metal o plástico, que retienen las partículas de mayor tamaño y dejan pasar las de menor diámetro. Por ejemplo: trozos de mármol mezclados con arena; harina - corcho; sal fina - pedazos de roca; canto rodado, etc



Se usan estos tamices en los casos de medir y tamizar arenas de fundición, detergentes en polvo, café, minerales, compuestos químicos, carbón, materiales de construcción y relleno, harinas, semillas, metales en polvo, fertilizantes artificiales, suelos.
Estos tamices están construidos en una sola pieza, estos tamices, a modo de base de cilindro cortado, se diseñan con un tejido sin ranuras para evitar la acumulación de suciedad en los puntos de cruce ( sin soldaduras, sin residuos). Estos tamices reflejan los condicionamientos de normas ISO con un proceso de fabricación de alto rendimiento, tienen alta resistencia a la corrosión, y son fáciles de limpiar pues son de acero inoxidable hiperaleado. Dada la aplicación de estos tamices antes de su salida a mercado, son ampliamente probados, medidos ópticamente y expedidos con certificado de calibración. Similares a estos tamices son los utilizados en el tamizado de aguas.

EQUIPOS INDUSTRIALES PARA EL TAMIZADO

1. – RASTRILLOS

Se utiliza mucho para tamizado de grandes tamaños, en especial los superiores a 2,5 cm. Están construidos simplemente por un grupo de barras paralelas, separadas en sus extremos mediante espaciadores. Las barras pueden estar dispuestas horizontalmente o hallarse inclinadas en sentido longitudinal, de 200 a 500 sexagesimales sobre la horizontal, según la naturaleza del material a tratar. Debido al desgaste que s

ufren las barras, éstas pueden ser de acero manganeso.

Los rastrillos se construyen con un ancho de 0,90 a 1,20 m ; y barras de 2,40 a 3 m de largo y se aplican en los casos, tan frecuentes, en que se dese

a separar las piezas pequeñas y partículas de un material grueso, antes de su tratamiento en un quebrantador o triturador.

La capacidad de trabajo de los rastrillos varía entre 1000 a 1600 toneladas de materiales por metro cuadrado de superficie y 24 horas , utilizando barras espaciadas entre sí, unos 2,5 cm.

2. – TAMICES FIJOS

Se construyen con placas metálicas perforada

s, así como también con tejidos metálicos que suelen disponerse en ángulo hasta de 600 sexagesimales con la horizontal.

Estos tamices se usan en las operaciones intermitentes de pequeña escala, tales como el cribado de la arena, grava o carbón, para lo cual se proyecta el material sobre el tamiz.

Cuando hay que tratar un elevado tonelaje, las

cribas fijas se reemplazan por las vibratorias.

3. TAMICES VIBRATORIOS

Se utilizan para grandes capacidades. El movimiento vibratorio se le comunica al tamiz por medio de levas, con una excéntrica y u

n volante desequilibrado, o mediante un electroimán. El tamiz puede poseer una sola superficie tamizante o llevar dos o tres tamices en serie.

4. – TAMICES OSCILANTES

Se caracterizan por una velocidad relativamente pequeña ( 300 a 400 oscilaciones por minuto ) en un plano esencialmente paralelo al del tamiz. La criba lleva un tamiz que se mueve en un vaivén mediante una excéntrica y otro mecanismo enlazado al único soporte del tamiz, que suele ser una barra vertical que sostiene a la caja del mismo.

Constituye el tipo más barato de tamiz que ofrece

n los constructores, y se aplica para trabajos intermitentes o discontinuos.

El cernidor está formado por una caja que lleva un cierto número de telas tamizantes dispuestas unas sobre otras, que reciben un movimiento oscilante por una excéntrica o contrapeso que describe una órbita casi circular.

5. – TAMICES DE VAIVEN

Se propulsan mediante una excéntrica montada en el lado de la alimentación. El movimiento varía desde el giratorio de casi 50 mm de diámetro

, en el extremo de alimentación, hasta 1 de vaivén en el extremo o de descarga. Estos tamices suelen tener una inclinación de unos 5 0 sexagesimales, dando al tamiz un movimiento perpendicular a las del tamizado, de casi 2,5 mm . Bajo la superficie activa del tamiz y mediante las bolas de caucho localizadas en determinadas zonas se consigue además, otra vibración.

Este equipo está muy generalizado se usa mucho para el tamizado de productos químicos secos hasta el tamaño correspondiente a casi 30 mallas.

6. – TAMIZ ROTATORIO ( TROMEL )

Esta formado por un tamiz de forma cilíndrica o tronco – cónica, que gira sobre su eje. Pueden disponerse varios tambores en serie, de modo que el tamizado del primero pase luego al segundo y de éste al tercero, etc. En algunos casos se construyen tamices de diferentes lados de orificios, dispuestos longitudinalmente, y la alimentación entra por el lado del tamiz más fino. De este modo se fracciona un producto en materiales de distintos tamaños. Pero la operación no resulta tan eficaz como en el caso de una serie de tambores sencillos o de un solo tambor compuesto.

El tambor compuesto está formado por dos o más superficies de tamizado, montadas concéntricamente sobre un mismo eje. La superficie tamizante con los orificios de mayor diámetro está montada en el interior del tambor, y la de agujeros más finos, en el exterior, resultando así materiales con tamaños intermedios comprendidos entre los dos límites.

La capacidad del tromel aumenta con la velocidad de rotación hasta un valor de ésta para lo cual cegado el tamiz por acumulaciones y atasque del material en sus orificios. Si la velocidad de rotación se incrementa hasta la velocidad critica, el material ya no se desliza sobre la superficie tamizante, sino que es arrastrado por el tambor en su giro, debido a la acción de la fuerza centrífuga. Generalmente la mejor velocidad de trabajo es de 0,33 a 0,45 veces la crítica.

culas sólidas de acuerdo a su tamaño.Prácticamente es usar coladores de distintos tamaños en los orificios.Es decir los de orificios más grandes en la parte superior y los que los tienen más pequeños en la parte inferior. Los coladores son llamados tamices(de ahí el nombre del procedimiento) y están hechos de telas metálicas.

El ejemplo típico es el de la arena y piedras, para eliminar las piedras la arena es pasada a traves de un tamiz, la arena(partículas de menor tamaño)pasan por el colador y las piedras quedan en éste.

martes, 13 de julio de 2010

tipos de cristales

Cristalización
La operación de cristalización es aquella por media de la cual se separa un componente de una solución liquida transfiriéndolo a la fase sólida en forma de cristales que precipitan. Es una operación necesaria para todo producto químico que se presenta comercialmente en forma de polvos o cristales, ya sea el azúcar o sacarosa, la sal común o cloruro de sodio.
En la cadena de operaciones unitarias de los procesos de fabricación se ubica después de la evaporación y antes de la operación de secado de los cristales y envasado.
Toda sal o compuesto químico disuelto en algún solvente en fase liquida puede ser precipitada por cristalización bajo ciertas condiciones de concentración y temperatura que el ingeniero químico debe establecer dependiendo de las características y propiedades de la solución, principalmente la solubilidad o concentración de saturación, la viscosidad de la solución, etc.
Para poder ser transferido a la fase sólida, es decir, cristalizar, un soluto cualquiera debe eliminar su calor latente o entalpía de fusión, por lo que el estado cristalino además de ser el mas puro, es el de menor nivel energético de los tres estados físicos de la materia, en el que las moléculas permanecen inmóviles unas respecto a otras, formando estructuras en el espacio, con la misma geometría, sin importar la dimensión del cristal.
Tipo de cristales
Un cristal puede ser definido como un sólido compuesto de átomos arreglados en orden, en un modelo de tipo repetitivo. La distancia interatómica en un cristal de cualquier material definido es constante y es una característica del material. Debido a que el patrón o arreglo de los átomos es repetido en todas direcciones, existen restricciones definidas en el tipo de simetría que el cristal posee.
La forma geométrica de los cristales es una de las características de cada sal pura o compuesto químico, por lo que la ciencia que estudia los cristales en general, la cristalografía, los ha clasificado en siete sistemas universales de cristalización:
Sistema Cúbico
Las sustancias que cristalizan bajo este sistema forman cristales de forma cúbica, los cuales se pueden definir como cuerpos en el espacio que manifiestan tres ejes en ángulo recto, con “segmentos”, “látices”, ó aristas” de igual magnitud, que forman seis caras o lados del cubo. A esta familia pertenecen los cristales de oro, plata, diamante, cloruro de sodio, etc.















Sistema Tetragonal
Estos cristales forman cuerpos con tres ejes en el espacio en ángulo recto, con dos de sus segmentos de igual magnitud, hexaedros con cuatro caras iguales, representados por los cristales de oxido de estaño.













Sistema Ortorrómbico
Presentan tres ejes en ángulo recto pero ninguno de sus lados o segmentos son iguales, formando hexaedros con tres pares de caras iguales pero diferentes entre par y par, representados por los cristales de azufre, nitrato de potasio, sulfato de bario, etc.






Sistema Monoclínico
Presentan tres ejes en el espacio, pero sólo dos en ángulo recto, con ningún segmento igual, como es el caso del bórax y de la sacarosa.




Sistema Triclínico
Presentan tres ejes en el espacio, ninguno en ángulo recto, con ningún segmento igual, formando cristales ahusados como agujas, como es el caso de la cafeína.




Sistema Hexagonal
Presentan cuatro ejes en el espacio, tres de los cuales son coplanares en ángulo de 60°, formando un hexágono bencénico y el cuarto en ángulo recto, como son los cristales de zinc, cuarzo, magnesio, cadmio, etc.



Sistema Romboédrico
Presentan tres ejes de similar ángulo entre si, pero ninguno es recto, y segmentos iguales, como son los cristales de arsénico, bismuto y carbonato de calcio y mármol.
Importancia de la cristalización en la industria
En muchos casos, el producto que sale para la venta de una planta, tiene que estar bajo la forma de cristales. Los cristales se han producido mediante diversos métodos de cristalización que van desde los más sencillos que consisten en dejar reposar recipientes que se llenan originalmente con soluciones calientes y concentradas, hasta procesos continuos rigurosamente controlados y otros con muchos pasos o etapas diseñados para proporcionar un producto que tenga uniformidad en la forma, tamaño de la partícula, contenido de humedad y pureza. Las demandas cada vez mas crecientes de los clientes hacen que los cristalizadores sencillos por lotes se estén retirando del uso, ya que las especificaciones de los productos son cada vez más rígidas.



La cristalización es importante como proceso industrial por los diferentes materiales que son y pueden ser comercializados en forma de cristales. Su empleo tan difundido se debe probablemente a la gran pureza y la forma atractiva del producto químico sólido, que se puede obtener a partir de soluciones relativamente impuras en un solo paso de procesamiento. En términos de los requerimientos de energía, la cristalización requiere mucho menos para la separación que lo que requiere la destilación y otros métodos de purificación utilizados comúnmente. Además se puede realizar a temperaturas relativamente bajas y a una escala que varía desde unos cuantos gramos hasta miles de toneladas diarias. La cristalización se puede realizar a partir de un vapor, una fusión o una solución. La mayor parte de las aplicaciones industriales de la operación incluyen la cristalización a partir de soluciones. Sin embargo, la solidificación cristalina de los metales es básicamente un proceso de cristalización y se ha desarrollado gran cantidad de teoría en relación con la cristalización de los metales.

martes, 25 de mayo de 2010

Medidores insutriales de temperatura



Termómetro de contacto con varios canales TL-309

El termómetro de contacto TL-309 es un termómetro digital de cuatro canales de entrada alimentado por baterías con una memoria de datos interna para 16.000 valores de medición (4000 por entrada). El software en inglés del envío hace posible la lectura de los valores almacenados desde el termómetro de contacto con la ayuda de una interfaz RS-232 y su posterior valoración y grabación de datos en un PC. Se puede elegir el intervalo de grabación en el termómetro de contacto durante la grabación de dichos datos.

Termómetros en General
La medición de la temperatura se realiza en múltiples sectores. Los aparatos para analizar la temperatura se dividen en medido- res y comprobadores. Les ofrecemos también termómetros que pueden indicar la temperatura en °C, K (Kelvin) y °F, como por ejemplo el pirómetro PCE-880. También contamos con algu- nos termómetros que son resistentes al agua. Además podrá elegir entre un amplio espectro de termo elementos / sensores para los termómetros. Se pueden expedir certificados de calibración ISO (calibración de laboratorio) para la mayoría de los termómetros. Al final de esta página encontrará informaciones acerca de los aparatos de medición sin contacto o puede visitar la página de los medidores de temperatura por infrarrojos.

Medidores de nivel de liquidos


Medidores de nivel de líquidos

Los medidores de líquidos trabajan midiendo, bien directamente la altura del líquido sobre una línea de referencia, bien la presión hidrostática, bien el desplazamiento producido por un flotador por el propio líquido contenido en el tanque, o bien aprovechando las características eléctrica del líquido.
Los primeros, instrumentos de medida directa se dividen en: sonda, cinta y plomada, nivel de cristal e instrumentos de flotador. Estos usan el principio mecánico de transmisión de movimiento entrando en contacto directo con el líquido mediante algún brazo de extensión, además operan a presión atmosférica generalmente y se puede decir que son los más simples y menos costosos. Por ello, son de gran utilidad y frecuentemente son los candidatos escogidos en la industria siempre y cuando las características del líquido y del proceso lo permitan.
Los aparatos que miden el nivel aprovechando la presión hidrostática se dividen en:

Medidor manométrico.

Medidor de membrana

Medidor tipo burbujeo

Medidor de presión diferencial de diafragma.

Estos aparatos son un poco más complejos en tanto usan el principio de que la presión en la base de un tanque contenedor de un líquido es directamente proporcional a la altura y densidad de la columna de fluido.

El empuje producido por el propio líquido lo aprovecha el medidor de desplazamiento a barra de torsión. Que consiste en un flotador parcialmente sumergido en el líquido y conectado mediante un tubo de torsión unido rígidamente al tanque.

Los instrumentos que utilizan las características eléctricas del líquido se clasifican en:

Medidor resistivo

Medidor conductivo

Medidor capacitivo

Medidor Ultrasónico

Medidor de radiación

Medidor de láser.

Todos los fluidos tienen propiedades eléctricas que los hacen distintivos, mediante dispositivos o electrodos que permiten el paso de cierta forma de onda electromagnética o flujo de partículas que al ser recogidas muestran alteraciones que permiten calcular el nivel del líquido.

Proceso Quimico


Proceso químico

Un proceso químico es un conjunto de operaciones químicas o físicas ordenadas a la transformación de unas materias iniciales en productos finales diferentes. Un producto es diferente de otro cuando tenga distinta composición, esté en un estado distinto o hayan cambiado sus condiciones.

En la descripción general de cualquier proceso químico existen diferentes operaciones involucradas. Unas llevan inherentes diversas reacciones químicas. En cambio otros pasos son meramente físicos, es decir, sin reacciones químicas presentes. Podemos decir que cualquier proceso químico que se pueda diseñar consta de una serie de operaciones físicas y químicas. Cada una de estas operaciones es una operación unitaria dentro del proceso global.

martes, 11 de mayo de 2010

Medidores de Caudal-Flujo



TIPOS DE MEDIDORES DE CAUDAL


FACTORES PARA LA ELECCIÓN DEL TIPO DE MEDIDOR DE FLUIDO
Rango: los medidores disponibles en el mercado pueden medir flujos desde varios mililitros por segundo (ml/s) para experimentos precisos de laboratorio hasta varios miles de metros cúbicos por segundo (m3/s) para sistemas de irrigación de agua o agua municipal o sistemas de drenaje. Para una instalación de medición en particular, debe conocerse el orden de magnitud general de la velocidad de flujo así como el rango de las variaciones esperadas.
Exactitud requerida: cualquier dispositivo de medición de flujo instalado y operado adecuadamente puede proporcionar una exactitud dentro del 5 % del flujo real. La mayoría de los medidores en el mercado tienen una exactitud del 2% y algunos dicen tener una exactitud de más del 0.5%. El costo es con frecuencia uno de los factores importantes cuando se requiere de una gran exactitud.
Pérdida de presión: debido a que los detalles de construcción de los distintos medidores son muy diferentes, éstos proporcionan diversas cantidades de pérdida de energía o pérdida de presión conforme el fluido corre a través de ellos. Excepto algunos tipos, los medidores de fluido llevan a cabo la medición estableciendo una restricción o un dispositivo mecánico en la corriente de flujo, causando así la pérdida de energía.
Tipo de fluido:el funcionamiento de algunos medidores de fluido se encuentra afectado por las propiedades y condiciones del fluido. Una consideración básica es si el fluido es un líquido o un gas. Otros factores que pueden ser importantes son la viscosidad, la temperatura, la corrosión, la conductividad eléctrica, la claridad óptica, las propiedades de lubricación y homogeneidad.
Calibración: se requiere de calibración en algunos tipos de medidores. Algunos fabricantes proporcionan una calibración en forma de una gráfica o esquema del flujo real versus indicación de la lectura. Algunos están equipados para hacer la lectura en forma directa con escalas calibradas en las unidades de flujo que se deseen. En el caso del tipo más básico de los medidores, tales como los de cabeza variable, se han determinado formas geométricas y dimensiones estándar para las que se encuentran datos empíricos disponibles. Estos datos relacionan el flujo con una variable fácil de medición, tal como una diferencia de presión o un nivel de fluido.